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Abstract

Document retrieval is a fundamental information retrieval problem with many ap-

plications including web search. In document retrieval problems, the challenge is to

index a collection of documents d1, d2, ...dD so that we can efficiently retrieve relevant

documents, with respect to a query pattern P [1..m]. Every document, as well as P ,

is a string over some alphabet Σ. Many different document retrieval problems have

been studied. In the top-k retrieval problem, only the k most relevant documents

must be returned. Here, relevance is measured by a score function. One common

measure is term frequency, the number of occurrences of P in the document. In the

document listing problem, the goal is to list all of the documents that contain P .

Efficient solutions to these two document retrieval problems are known. However,

recent interest in approximate text indexing has motivated new problems. In one

kind of approximate text matching, the query pattern P is allowed to contain wildcard

characters, denoted by ‘φ’. Each φ can match any single character in Σ.

In this thesis we consider the top-k retrieval and document listing problems, where

P contains a single wildcard. We present an O(n lg n)-word index for top-k document

retrieval. Document relevance is scored by term frequency. The index can answer

queries in O(m+ (k lg2D
lgn

+k) lg lg n) time. Here, n is the total length of the document

collection and m is the length of the query pattern. We also give the first index for

the document listing problem with optimal O(m + docc) query time, where docc is

the number of documents returned. The index occupies O(n lg n) words of space.

v



Acknowledgements

I would like to sincerely thank my supervisor, Meng He, for his time, support, and

guidance.

vi



Chapter 1

Introduction

Document retrieval is an important and fundamental information retrieval problem.

The goal is to index a collection of documents to support efficient retrieval. Usually

a query pattern is given and the relevant documents from the collection must be

returned. Document retrieval problems have many applications including web search,

database systems and bioinformatics.

Many versions of the problem have been studied. In top-k retrieval, given a

query pattern P [1..m], we want to return only the k most relevant documents. Many

methods for scoring relevance are possible. For example, the number of occurrences

of the pattern in a document may be used as a measure of its relevance. This is called

the term frequency of the pattern. Similarly, in the document listing problem, the

goal is to return the documents that contain at least one occurrence of the pattern

P .

One common approach to these problems is an inverted index [23]. Here, we

have a set of words and for each word we store a list of documents that contain the

word. However, this method requires that the text has a logical notion of words

to index. This idea does not apply to text that contains DNA data. Furthermore,

there are many cases where supporting arbitrary queries would be desirable. This has

motivated the development of suffix trees and arrays, which have been successfully

applied to many document retrieval problems, e.g. [16].

These classic approaches only support finding the exact occurrences of a pattern in

a document. In many cases, we would like to support more approximate matching of a

pattern. Many kinds of approximate search have been considered. In one variant, the

query pattern may contain a special wildcard character, denoted by φ. This character

can match any character in the alphabet. For example, the pattern “φbc” would

match “abc”, “bbc”, “cbc”, etc. This kind of approximate matching is especially

applicable to bioinformatics, where single nucleotide polymorphisms (SNPs) [7] can
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2

be modeled by wildcards. Specifically, there are cases where certain DNA base pairs

vary throughout a population. This poses a challenge for aligning DNA sequences.

Wildcard pattern matching has been used to support alignment where the sequence

contains SNPs [15].

Text indexing with wildcards in the pattern has been studied in depth. However,

extending document retrieval indexes to support wildcards has proven to be difficult.

Efficient solutions to many document retrieval problems are still not known. In this

thesis, new indexes that support a single wildcard in the query pattern are developed.

1.1 Our Results

We present several results for document retrieval problems where the query pattern

contains one wildcard, as summarized in the following list. Here, n is the total length

of the documents, m is the length of the query pattern, D is the number of documents

in the collection, and σ is the size of the alphabet.

• We present the first top-k index which supports patterns containing a single

wildcard. Our index achieves a query time of O(m + (k lg2D
lgn

+ k) lg lg n) and

uses O(n lg n) words of space.

• We also present a new solution to the document listing problem where the

pattern may contain 1 wildcard. Our index uses O(n lg n) words but achieves

an optimal query time of O(m+ docc), where docc is the number of documents

that match P . A recent result from Lewenstein et al. [12] used only O(n) words

but had a query time of O(m+ σ
√

lg lg lg n+ docc).



Chapter 2

Related Work

2.1 Text Indexing with Wildcards

Text indexing is a classic problem that has been studied in depth. The goal is to

index text T [1..n] over some alphabet Σ to efficiently support finding occurrences of

a query pattern P [1..m] in T .

Many generalizations of this classic problem have been studied. There has been

interest in a variety of approximate text indexing problems. In one generalization

query patterns are allowed to contain special wildcard characters, denoted by φ. The

wildcard character may match any single character in Σ. This particular problem is

partially motivated by applications to bioinformatics. As discussed in the introduc-

tion, one such application is DNA sequence alignment where the sequence contains

SNPs.

One of the early results on the problem was by Cole et al. [3]. They gave an

O(n lgj n)-word index with a query time of O(m+ 2g lg lg n+ occ). Here, occ denotes

the number of occurrences of P in the text, j is the maximum number of wildcards

allowed in the query and g is the actual number of wildcards in the query.

This result was generalized by Bille et al. [1]. They presented a O(n lg n logj−1
β n)-

word solution with query time O(m + βg lg lg n + occ), 2 ≤ β ≤ σ. Setting β = 2

gives Cole’s index.

Later Lewenstein et al. showed how the space cost of Cole’s index could be

improved to O(n lgj−1 n) words while maintaining the same query time [13]. Another

index by Lewenstein et al. [14] takes only O(n) words and can answer queries in

O(m + σg
√

lg lg lg n + occ) time. They also gave a O(n)-bit index with O((m +

σg + occ) lgε n) query time. While the query time is worse, even the space usage of

O(n)-word indexes has been considered impractical [13] when the text is very long.

Another research direction has focused on the case in which wildcards appear

in the text but not in the pattern. Cole’s index can support wildcards in both the

3
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text and pattern in the same time and space with some modifications [3]. Much

of the subsequent work on this problem focused on developing lower space indexes.

To review recent results, some additional notation is required. Text that contains

d + 1 text segments separated by d groups of wildcards can be written as T [1..n] =

T0φ...φT1φ...φTd. We let γ denote the total number of occurrences of text segments

(T0, T1, ...Td) in P . Additionally, occ1 denotes the number of matches of P in T where

the matched text contains no wildcards and occ2 is the number of matches where the

text contains a single group of wildcards. k denotes the number of wildcards in the

text, and d̂ is the number of distinct lengths for groups of consecutive wildcards.

Lam et al. [11] presented a linear space index with a query time of O(m2 lg n +

m lg2 n + γ lg n + occ). Later a succinct space was given by Tam et al. [21]. Their

index used (3 + o(1))n lg σ + O(k lg n) bits and could answer queries in O(m(lg σ +

min(m, d) lg k) + occ1 lgε+1 n+ occ2 lgε d+ γ) time. Recent work achieves compressed

space. An index by Hon et al. [7] has O(m(lg1+ε n+ min(m, d̂) lgD) + occ1 lg1+ε n+

occ2 lgε d+γ lg γ) query time with nHo(logσ n)+o(n lg σ)+O(d lg n) bits. Here, Ho(logσ n)

denotes the o(logσ n)-th order empirical entropy of the text.

2.2 Top-k Document Retrieval

The top-k document retrieval problem has been studied extensively and a variety

of score functions have been considered. Some possibilities include a static docu-

ment assigned score (such as PageRank [20]), term frequency, and the proximity of

occurrences of the query pattern (term proximity) [8].

A formal study of this problem was originally initiated by Hon et al. [9]. They

gave an O(n lg n)-word index with a query time of O(m + k + lg n lg lg n). It only

supports term frequency as a score function.

Later Hon et al. [8] gave a more general framework for top-k problems with various

time space trade-offs. They considered mainly the case where the score function

is term frequency. However, their framework can be easily applied to other score

functions. They presented a linear space framework with O(m + k) query time if

the documents are returned in unsorted order. If sorted order is required, then the

query time is O(m+ k lg k). Additonal time and space trade-offs are also presented.

One index uses 2|CSA| + D lg n
D

+ O(D) + o(n) bits for a query time of O(ts(P ) +
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ktsa lg k lgε n). |CSA| denotes the size of a compressed suffix array [6] (CSA) in bits,

ts(P ) is the time required to compute the suffix range of the pattern P using the

CSA, and tsa is the time to retrieve a value from the CSA. Another one of their

indexes occupies |CSA| + n lgD + o(n lgD + n lg σ) bits and has a query time of

O(ts(P ) +m+ lg6 lg n+ k((lg σ lg lg n)1+ε + lg2 lg n+ lg k)).

Hon’s index has been extended to support other difficult top-k problems. In [8]

Hon et al. present an index for the two pattern (2P) retrieval problem with a query

time of O(m1 + m2 +
√
nk lgD lg lg n), where m1 and m2 are the lengths of the two

patterns. Munro et al. [17] showed how the succinct space index could handle term

proximity as a score function. Their index uses |CSA| + o(n) bits and has a query

time of O((m+ k)polylog n).

Navarro et al. [19] gave an alternate linear space index which can return docu-

ments in sorted order in optimal O(m+ k) time. Their index supports multiple score

functions including term frequency and proximity.

2.3 Document Listing

The document listing problem was originally studied by Matias et al. [16]. Their

index occupied linear space and had a query time of O(m lgD + docc).

This result was later improved by Muturkishnan [18]. He showed how the prob-

lem could be reduced to coloured range reporting and gave a O(n)-word index with

optimal O(m+ docc) query time.

Document listing with a single wildcard in the query pattern is a more difficult

problem. Recently Lewenstein et al. [12] proposed an index that utilizes the notion of

unique prefixes to achieve O(n) words of space and O(m+ σ
√

lg lg lg n+ docc) query

time.

Document counting is a related problem where the goal is to count how many

documents contain a pattern. For regular pattern matching, such queries can be

answered in O(m) time by simply annotating each node in the suffix tree with the

number of unique documents [13]. Limited work has been done for the case where the

query pattern may contain a wildcard. Lewenstein et al. [13] gave an O(n lg n)-space

index with optimal O(m) query time.



Chapter 3

Preliminaries

3.1 Range Minimum Queries

Range Minimum Query (RMQ) data structures have found a very wide range of

applications. Given an array A[1..n] of integers, an RMQ structure can efficiently

find the minimum (or maximum) element in some range A[i..j] where 1 ≤ i ≤ j ≤ n.

We use the following result from Fischer et al. [4]:

Lemma 3.1.1 ([4]). Range minimum (maximum) queries on an array A[1..n] of

integers can be answered in O(1) time with an index of 2n+ o(n) bits.

3.2 Generalized Suffix Trees

Suffix trees, originally proposed by Weiner [22], are a classic text index which stores

all of the suffixes of some text T [1..n] in a compact trie. A suffix tree occupies O(n)

words and can support a variety of navigation operations.

In [9] Hon et al. describe a generalized version of suffix trees that indexes a

collection of documents. For a set of D documents d1, d2, ..., dD, the generalized suffix

tree (GST) for the document collection is the suffix tree built over the string T =

d1$d2$...dD$. Here ‘$’ is a special character that does not appear in the documents.

We consider this character lexicographically smaller than all other characters in the

alphabet. By constructing the text this way, each suffix in T is unique, even if two

documents are identical. We use the GST as described in [8].

Lemma 3.2.1 ([8]). The generalized suffix tree for a set of D documents of total

length n occupies O(n) words and supports the following operations in O(1) time:

• Navigation by the starting character of an edge.

• Finding left-most and right-most leaves in a node’s subtree (the suffix range of

a pattern).

6
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• Finding the preorder rank of a node.

• Finding a node, given its preorder rank.

3.3 Document Arrays with Rank Queries

Document arrays have proven to be a useful tool in document retrieval problems.

Suppose we have some text T [1..n] = d1$d2$...dD$, and a suffix array SA built over

T . A suffix array SA maintains the suffixes of T in lexicographical order so that

SA[i] = j if and only if T [j..n] is the i-th smallest suffix. The entries in SA correspond

to the leaves of the GST. We say that a suffix T [x..n] is contained in document y if

position x in T corresponds to document dy.

A document array is an array E[1..n] such that E[i] = r if and only if the i-th

leaf in the generalized suffix tree corresponds to a suffix in the r-th document. In

other words, E[i] indicates which document contains the suffix SA[i]. Each suffix is

contained in exactly one document because of how the string T is created, as discussed

in the previous section.

We illustrate this with a brief example. Consider the documents {c, b, a}, with

document IDs 1, 2, and 3 respectively. Then T = c$b$a$.

The suffixes of T are c$b$a$, $b$a$, b$a$, $a$, a$, $. In sorted order, the suffixes

are $, $a$, $b$a$, a$, b$a$, c$b$a$, so the suffix array is SA = [6, 4, 2, 5, 3, 1]. Here,

E = [3, 2, 1, 3, 2, 1].

Rank queries on E can support many useful operations. rankE(r, i) returns the

number of occurrences of r in E[1..i]. We use ideas from [8] and apply [5] to encoding

document arrays, which gives the following result.

Lemma 3.3.1 ([5]). Let E[1..n] be a document array for a set of D documents. E

can be maintained in n lgD+ o(n lgD) bits such that the operation rankE(r, i) can be

done in O(lg lg n) time.

3.4 Bit Vectors with Rank and Select

A bit vector B[1..n] is a binary string of n bits. We define two basic operations on

bit vectors. Firstly, rankB(i) returns the number of ones in B[1..i]. Additionally,
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selectB(i) returns the position of the i-th one in B. Jacobson [10] showed how bit

vectors could be indexed with very little extra space to support these two operations

in constant time. His result is summarized in the following lemma.

Lemma 3.4.1 ([10]). A bit vector B[1..n] can represented using 2n + o(n) bits such

that rankB and selectB queries can be answered in O(1) time.



Chapter 4

Top-k Document Retrieval With One Wildcard

Now we consider the problem of top-k document retrieval. Here we are given a set of

D documents d1, d2, d3, ...dD of total length n, all drawn over an alphabet Σ, where

|Σ| = σ. Given a query (P, k), we seek to return the k most relevant documents with

respect to some pattern P . Here, P [1..m] = P1φP2, where φ is a wildcard that can

match any character in Σ. A variety of score functions for calculating relevance are

possible. Term frequency is a very common score function which counts how many

occurrences of a pattern occur in a document. We let TF(P, dr) denote the number

of occurrences of the pattern P in the document dr. We generalize this to apply to

patterns with a single wildcard as follows:

SCORE(P1φP2, dr) =
∑
α∈Σ

TF(P1αP2, dr)

Top-k indexes may return the top-k document IDs in sorted order (by relevance)

or in unsorted order. For all of the indexes described in this thesis, documents are

returned in unsorted order. Sorted order can always be returned by sorting the final

k results by score. This adds a O(k lg k) term to the query time.

To create a top-k index that supports wildcards, we combine a classic wildcard

index by Cole et al. [3] with ideas from Hon et al. [8].

4.1 Cole’s Index

We begin with a review of Cole’s wildcard index. His index supports finding all the

occurrences of a pattern P [1..m] in some text T [1..n] where the P [1..m] contains a

bounded number of wildcards [3]. The non-wildcard characters in P and T are drawn

from an alphabet of size |Σ| = σ. We only need to handle query patterns with a

single wildcard, so we describe a version of the index for just one wildcard.

If the pattern does not contain any wildcards, occurrences of P can be found

efficiently in O(m + occ) time using a regular suffix tree. If P contains a wildcard,

9
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then there are σ possible patterns we need to look for in the suffix tree. This leads

to a query time of O(mσ + occ). To improve the query time, every node in the

suffix tree can be augmented with wildcard links. Each wildcard link could point to a

new tree which includes all of the possible suffixes that could result from matching a

single wildcard in that position. This is all of the suffixes related to that node, except

that we skip the first character of each. Hence, when a wildcard is encountered, the

wildcard link can be followed. This results in a query time of O(m + occ) but has a

prohibitive space cost of O(n2) words.

Cole’s index is based on this idea, but the extra trees only include some of the

possible suffixes to reduce the space cost. It is based on the heavy path decomposition

of the tree. A child of a node is said to be heavy if it contains more leaves in its subtree

than the other children. Likewise, the other children are considered light. If there is

a tie, a single child can be arbitrarily designated as the heavy. Figure 4.1 shows an

example of this. Here, u is some node in the tree, the green nodes are light children,

and the red node is the heavy child of u. The heavy child has three leaves in it’s

subtree, while the light children all of 2 or less leaves.

Figure 4.1: The heavy and light children of some node u

In Cole’s index, every node in the tree is augmented with a wildcard link. Each

wildcard links points to another suffix tree called a sidetree. For a node v, sidetree(v)

is a suffix tree that contains only certain suffixes related to the light children of v.

For each light child u of v, the sidetree contains all of the suffixes corresponding to u,

except that we skip the first character on the edge from v to u. Essentially, the first

character on each path is matched by the wildcard.

Figure 4.2 shows an example of a sidetree. In this example, the light children of
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u contain the suffixes “abbba”, “abbcd”, “bbc”, and “bbd”. The sidetree contains

these suffixes, but skips the first character of each. Therefore, the sidetree contains

the suffixes “bbba”, “bbcd”, “bc”, and “bd”.

Figure 4.2: The sidetree of some node u

We call nodes in the original tree level-0 nodes and nodes in a sidetree level-1

nodes.

To answer queries, matching in the suffix tree is done normally until a wildcard

in the pattern is encountered. While following a path in the suffix tree, the next

character in P is compared to the next character on the edge’s label. If the next

character in P is a wildcard, then it matches any character on the edge and matching

can continue normally. If a wildcard encountered after reaching some node v (im-

mediately after the last character on an edge is matched), then the search branches.

First, follow the wildcard link at v and continue matching the pattern in sidetree(v).

Also try to follow the path to the heavy child of v. This procedure always leads to

at most two nodes in the tree. We call such nodes locus nodes. The leaves of these

nodes correspond to all of the occurrences of P in the text.

Since there are at most 2 possible paths to traverse with one wildcard this index

can find both locus nodes in O(m) time. We refer to [3] and [13] for the analysis of

the space cost of the index. The number of nodes in all sidetrees can be bounded by

O(n lg n). The results are summarized in the following lemma.

Lemma 4.1.1. With an index of O(n lg n) words, all locus nodes of a pattern P [1..m]

containing at most one wildcard can be located in the augmented tree in O(m) time.
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4.2 Top-k with Cole’s Index

Our index is based on the top-k document retrieval framework proposed by Hon et

al. [8]. We show that it is possible to combine Cole’s wildcard index [8] with this

top-k framework to efficiently support queries with wildcards in the pattern.

Let T [1..n] = d1$d2$...dD$ be the string obtained by concatenating the documents

together. We first build a generalized suffix tree (GST) over T . We then augment this

suffix tree with the first level of Cole’s index. Every node in the tree is augmented

with a wildcard link that points to that node’s sidetree. The augmented GST has

O(n lg n) nodes because Cole’s index has O(n lg n) nodes. The overall space required

is also O(n lg n) by Lemma 4.1.1.

We also maintain a document array E[1..O(n lg n)] over all the leaves of the new

tree as in Lemma 3.3.1. The augmented GST has O(n lg n) leaves, but rank queries

on E still take O(lg lg(n lg n)) = O(lg lg n+ lg lg lg n) = O(lg lg n) time.

To handle top-k queries, we build some additional data structures. The idea is to

annotate certain nodes with partial precomputed answers. We do this using the same

techniques described in Section 5 of [8]. Specifically, each structure we build can help

answer top-k queries for a specific value of k. Instead of doing this for all values of

k, we only store them for the powers of 2 up to D, e.g. k = 1, 2, 4, 8, ...D. We call

each structure a tier. Therefore, tier-i stores some precomputed answers for top-2i

queries, for 0 ≤ i ≤ dlgDe. There are O(lgD) tiers. When looking up an answer, the

structure for the nearest higher value of k can be used.

Now, we describe how a tier is built. We consider the i-th tier. The others are

constructed in the same way. For tier-i, we must build structures to answer top-2i

queries. Matching a pattern with Cole’s index can result in up to two locus nodes

(every possible pattern corresponds to a pair of locus nodes). Therefore, to help

answer top-2i queries, we could store precomputed answers for some pairs of nodes.

It would require too much space to store precomputed information for all pairs of

nodes, so we mark a subset of nodes, and only precompute answers for pairs of

marked nodes.

For each tier i, we designate some nodes in the GST as tier-i marked nodes. To

determine which nodes should be marked, we apply Hon’s marking scheme [8]. Here,

nodes in the tree are marked using the following rules:
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1. Let g be the grouping factor. Partition leaves of the tree into groups of gi.

2. Mark the lowest common ancestor (LCA) of the first and last node in each

group.

3. Mark the LCA of all pairs of marked nodes.

4. Mark the first and last leaves of the subtree rooted at each marked node.

We use gi to denote the grouping factor used to mark nodes in tier-i. It is im-

portant to note that each tier is a separate structure. Nodes being marked in one

tier does not effect if they are marked in a different tier. Further, it is not required

that each tier have the same grouping factor (since they are separate structures). We

will later show how to pick values for each grouping factor to minimize the running

time. As already discussed, we will store precomputed top-2i lists for marked nodes

in tier-i. In [8] Hon proves the following properties about the marking scheme:

Lemma 4.2.1 ([8]). For a tree on O(n) nodes with a grouping factor of gi, the

marking scheme has the following properties:

• O(n/gi) nodes are marked

• If y is an unmarked node and x is the highest marked descendant of y, the

number of leaves in the subtree of y that are not in the subtree of x is at most

2gi.

In general, Cole’s index may result in up to two locus nodes for query patterns

with a single wildcard. Therefore, we store precomputed answers for all possible pairs

of marked nodes in each tier. To handle the case where there is only one marked node,

we define a special imaginary node called the null node, denoted by ∅. This node does

not exist in the tree, but acts as a placeholder to store top-k lists for individual nodes.

If v is a tier-i marked node, then the tier-i top-2i list for v is associated with the pair

of nodes (v, ∅).
For any tier i, there are O(n lgn

gi
) marked nodes and O(n

2 lg2 n
g2i

) pairs of marked

nodes. However, we do not need to store answers for all pairs because only some

pairs are possible.



14

If there are two locus nodes, one must be in level-0 (which contains only O(n)

nodes) and one must be in level-1 (which contains O(n lg n) nodes). To understand

this, consider how the search branches when the wildcard is encountered. On one

path, we follow the wildcard link and continue matching in the sidetree. This may

lead to one level-1 locus in the sidetree. We also follow the heavy path and continue

matching. Since there was only one wildcard in P , no more wildcard links will be

followed. Consequently, any locus node found this way must be in level-0. Therefore,

we only need to store answers for O(n
2 lgn
g2i

) pairs.

Storing a top-k list requires k lgD bits, and k = 2i for tier-i. We store a different

structure for O(lgD) different tiers. Now we can pick a value for each gi to guarantee

that the overall space cost is still O(n lg n) words. To achieve this, we need to make

sure that all the lists for a single tier occupy only O(n lg2 n
lgD

) bits. This is because there

are O(lgD) tiers and n lg2 n
lgD

lgD = n lg2 n bits = n lg n words.

Since there are O(n
2 lgn
g2i

) possible pairs of marked nodes for tier-i, storing the lists

for tier-i requires O( (n2 lgn)(2i lgD)

g2i
) bits. To find an appropriate value for gi, we set

this equal to our space requirement:

n lg2 n

lgD
=
n22i lg n lgD

g2
i

The smallest gi value that maintains O(n lg n)-word overall space is:

gi =

√
n2i lg2D

lg n
=

√
n2i

lg n
lgD

Since this table occupies O(n lg n) words, the space of the entire index can be

bounded by O(n lg n) words.

Note that by choosing a different grouping factor for each tier, the grouping factor

for tier-i contains a
√

2i factor. If we had to use the same grouping factor for every

node this would not be possible. Instead, we would have to use the highest value

of i to maintain O(n lg n)-word space. Therefore, the grouping factor would have

to contain a
√
D factor instead of a

√
2i factor since 2i = Θ(D) for the largest i.

As will be discussed in the following section,
√

2i = Θ(
√
k). This will allow the

overall running time to contain a
√
k factor instead of a

√
D factor, which is a clear

improvement since k ≤ D.
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4.3 Answering Queries

The index can answer top-k queries (P1φP2, k) in two steps. First, locus nodes in the

augmented GST corresponding to occurrences of the query pattern are found. This

can be done as described in Section 4.1. Each regular character in the pattern is

matched normally. If the next character to match is a wildcard and a wildcard link

is available in the tree, we follow the wildcard link and continue matching normally.

We also follow the heavy path of the node and continue matching normally. Finding

all locus nodes takes O(m) time by Lemma 4.1.1.

Consequently, up to 2 locus nodes can be found when the pattern contains a single

wildcard. There may be one or two locus nodes. If there are two, one must be in the

level-0 part of the tree and the other must be in level-1 (because a single wildcard

link was followed). We call these nodes u1 and u2 respectively. If there was only one

locus node u1, we represent it as the pair of nodes (u1, ∅).
Now we must find the top-k documents corresponding to these two locus nodes.

We do not have precomputed top-k lists for all possible k values. Instead, we compute

z = dlg ke. Now, 2z is the smallest power of 2 that is larger than the query k value.

Next, we find the highest tier-z marked descendants, u∗1 and u∗2, of the two locus

nodes (or just u∗1 if there was only one locus). This can be done in O(1) time if

we build a bit vector that encodes which nodes are marked for each tier, as in [8].

Suppose Bgi [1..O(n lg n)] has an entry for every node in the augmented GST, such

that Bgi [x] = 1 if and only if the node with preorder rank x (the x-th node encountered

in a preorder traversal of the tree) is a tier-i marked node. Further, augment the bit

vector with rank and select structures as in Lemma 3.4.1. Each bit vector occupies

O(n lg n) bits. We need one for each tier. Since there are O(lgD) tiers, the overall

space is still bounded by O(n lg n lgD)bits = O(n lg n) words.

The preorder rank of highest marked descendant of some node u with preorder

rank x can be found in O(1) time with:

selectBgi (rankBgi (x) + 1)

Given the preorder rank of the marked node, we can get find the node in the GST

in O(1) time with Lemma 3.2.1.

We retrieve the precomputed top-2z list for the pair of marked nodes. Recall that
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if there was just one locus node, the top-2z list is stored for the pair (u∗1, ∅). This gives

us O(k) candidates because k = Θ(2z). These candidates reflect the top-k documents

for the subtrees of the two marked nodes, but may not include all of the leaves of

the original locus node. We add the document IDs of all the leaves we missed to the

candidates set as follows. Let Leaf(x \ y) denote the set of leaves that are contained

in the subtree of x, excluding those in the subtree of y. If there are two locus nodes,

we check the documents that mark the leaves:

Leaf(u1 \ u∗1) ∩ Leaf(u2 \ u∗2)

Similarly, if there was only one locus node we just check the leaves Leaf(u1 \ u∗1). In

either case, there are O(gz) leaves in each of these ranges (gz is the grouping factor)

by Lemma 4.2.1. There are O(gz + k) candidate documents.

We do a linear scan of these results and remove any duplicate document IDs.

This can be done easily with a bit vector of D bits. We describe a classic procedure

for performing this task in the following lemma. Hon’s index also uses this idea to

remove duplicate document IDs.

Lemma 4.3.1. Suppose we have a list of A[1..n] of n integers, such that A[i] < U

for all i, 1 ≤ i ≤ n. We can create a new list that contains all of the unique elements

in A without any duplicates in O(n) time using O(U) extra bits.

Proof. Initialize a bit vector B[1..U ] to all zeros. We iterate over A. For each integer

A[i] = x, do nothing if B[x] is already set to 1. Otherwise, report the integer and set

B[x] to 1. This takes O(n) time since we look at each element in A once. Furthermore,

it is easy to see that each unique integer is reported only once.

Finally, we reset all of the bits in B to 0 by iterating through the O(n) integers

reported. For each reported integer x, we set B[x] = 0. This also takes O(n) time

since there are O(n) integers.

Now that we have a unique list of candidate documents, we must compute the

score of each. The term frequency of each document can be computed by counting

how many times each occurs in the subtree of each locus node. We note that the

sidetrees do contain duplicates of suffixes in the main tree. It may appear that there

is a risk of double counting certain suffixes when calculating the term frequency.
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However, this is not an issue because the level-1 locus is guaranteed to contain a set

of suffixes not in the subtree of the level-0 node (by the properties of Cole’s index

and the heavy path decomposition.)

Let Nl denote the number of locus nodes. The term frequency of each document

dr can be computed with rank queries as follows:

TF (P, dr) =

Nl∑
j=1

(rankE(epj, dr)− rankE(spj, dr))

Two rank queries per document are performed. Recall each rank query takes

O(lg lg n) time by Lemma 3.3.1, so the score for every candidate document can be

computed in O((gz + k) lg lg n) time.

Finally, we need to take just the top-k documents from the candidate set. As in

Hon’s index, we use a linear time selection algorithm (such as [2]) to find the k-th

highest scoring document in O(gz + k) time. Suppose the score is s. Next, we do

another linear scan of the list and report all of the documents that have a score greater

than s. If we have reported less than k documents, multiple documents might have

the score s. We iterate over the collection one more time and report documents with

score equal to s until k documents are reported or the end of the candidate list is

reached. This also takes O(gz + k) time.

We set gi =
√

n2i

lgn
lgD. Recall that k = Θ(2z). This gives us the following result.

Theorem 4.3.2. A collection of D documents can be indexed in O(n lg n) words

such that the top-k documents for a query pattern P [1..m] = P0φP1 can be returned

in O(m+ (
√

nk
lgn

lgD + k) lg lg n) time.

In the following section, we give another index with a better query time and the

same space by only marking single nodes instead of pairs of nodes. We remark that

while the index we just described is worse in query time, we believe it is more likely

to lead to a solution that supports patterns with multiple wildcards in the pattern. A

pattern containing h wildcards may result in up to 2h locus nodes with Cole’s index.

Storing precomputed top-k lists for some groups of marked nodes might lead to an

efficient index. On the other hand, if only individual nodes are marked, then the

query time will contain a O(2hk) term.
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4.4 A Faster Index

In the previous section we stored precomputed top-k results for all pairs of marked

nodes in each tier. As we discussed, storing results for groups of marked nodes may be

helpful in creating a more general index. However, for the case where there is only one

wildcard in the pattern, better results can be obtained if we only store precomputed

top-k lists for individual marked nodes.

As in the previous section, we build a GST over the document collection, augment

every node with Cole’s wildcard links, and build structures to help answer queries for

k = 1, 2, 4, 8, ..., D. We still apply Hon’s marking scheme for to each tier to determine

which nodes are marked. However, we only store precomputed top-k results for

individual marked nodes (we no longer store precomputed results for pairs of marked

nodes). This greatly reduces the space required and allows us to choose a smaller

grouping factor for each tier.

For each i, tier-i contains O(n lgn
gi

) marked nodes. There are O(lgD) tiers, and

each list requires O(k lgD) bits. To get an overall space of O(n lg2 n) bits:

n lg2 n

lgD
=
n lg n

gi
(2i lgD)

Solving the equation gives gi = 2i lg2D
lgn

. This gives us an O(n lg n) word index.

Queries can be answered using a similar strategy as in the previous section. We

apply Cole’s index to find up to two locus nodes, u1 and u2, in O(m) time.

Next, we retrieve the top-2z lists for the highest tier-z marked descendants of each

locus node, where z = dlg ke and 2z = Θ(k). The marked descendants can be found

in O(1) time as described in Section 4.3.

This gives us a candidate set of size O(2k) = O(k). As before, we add the addi-

tional relevant document IDs to the candidate set. These document IDs correspond

to leaves outside of the subtrees of the marked nodes:

Leaf(u1 \ u∗1) ∩ Leaf(u2 \ u∗2)

If there is only one locus node, we only have to consider the leaves in Leaf(u1\u∗1).

By Lemma 4.2.1, there are O(gz) leaves in the combined set. The candidate set

contains O(gz + k) documents. The rest of the process is identical to the previous
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index. We scan through each list and remove duplicate document IDs in O(gz + k)

time using Lemma 4.3.1. We compute the score of each document and return the k

documents with the highest scores. Since gz = 2z lg2D
lgn

and 2z = Θ(k), we get a query

time of O(m+ (k lg2D
lgn

+ k) lg lg n). This is summarized in the following theorem.

Theorem 4.4.1. A collection of D documents of total length n can be indexed in

O(n lg n) words such that the top-k documents for a query pattern P [1..m] = P0φP1

can be returned in O(m+ (k lg2D
lgn

+ k) lg lg n) time.

This result is comparable to the running times for other top-k and text indexing

problems. While the optimal running time regular top-k retrieval would be O(m+k),

top-k with wildcards intuitively appears to be a harder problem. Our index is faster

than than the best known indexes for other similar problems. In two pattern (2P)

retrieval there are two query patterns and the goal is to find all of the documents

that contain both patterns. This is similar to wildcard retrieval in that more than

one pattern must be considered. There are essentially σ different patterns to search

for in the wildcard problem (the wildcard may be replaced by any character in the

alphabet). Hon’s recent [8] index for the two pattern top-k problem used O(n)-words

and could only answer queries in O(m1 +m2 +
√
nk lgD lg lg n) time, where m1 and

m2 are the lengths of the two patterns.



Chapter 5

Document Listing with One Wildcard

Finally, we consider the document listing problem where the query pattern may con-

tain a single wildcard, P = P0φP1. Given a query pattern P we must list all docu-

ments that match P in at least one position. Our approach combines Cole’s index [3]

with ideas from Muthukrishnan [18] to obtain an index with optimal query time.

5.1 Augmented GST

First, we build a GST over the concatenated text of the set of documents as in Lemma

3.2.1. Next, the GST is augmented with the first level of Cole’s index as described in

Chapter 4. The resulting tree has O(n lg n) leaves.

A document array E[1..O(n lg n)] is constructed so that E[i] = r if and only if the

i-th leaf corresponds to a suffix in document r. There are O(n lg n) entries in E and

each takes O(lgD) bits. The space can be bounded by O(n lg n) words.

As discussed in Chapter 4, pattern matching with Cole’s index will lead to at most

two locus nodes, u1 and u2. The document IDs of leaves in either subtree correspond

to documents that match the pattern. Suppose u1 has a suffix range of [s1, e1] and

u2 has a suffix range of [s2, e2]. Listing all the documents that match P is equivalent

to listing the unique document IDs in E[s1..e1] ∩ E[s2..e2]. We apply ideas from

Muthukrishnan [18] to do this efficiently.

5.2 Coloured Range Listing

In [18] Muthukrishnan showed how document listing can be reduced to one dimen-

sional coloured range listing. We apply his solution to the problem. An array

C[1..O(n lg n)] is built. C is called the chain array of E. Here, C[i] = j if and

only if j is the largest integer such that E[j] = E[i] and j < i. If there is no such

j then C[i] = −1. More intuitively, if E[i] is the first occurrence of a document

20
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in E then C[i] = −1. Otherwise, C[i] gives the index of the last occurrence of the

document that precedes E[i].

Muthukrishnan showed how the chain array could be used to list only the docu-

ment IDs in a given range. The idea is that we only want to report the first occurrence

of each document ID in the range. If the query range is [L,R], then these are precisely

the document IDs E[i] where C[i] < L.

An RMQ can be used to find all of the elements in C[L..R] that are less than

L. To do this, find the minimum element, C[i], in C[L..R]. If it is larger than L,

stop. Otherwise report C[i] since C[i] < L. Next, find the minimum elements in

C[L..(i − 1)] and C[(i + 1)..R]. Again, report each minimum if it is less than L.

Continue in this way until all elements less than L are reported.

Lemma 3.1.1 gives an O(n)-bit index which can answer range minimum queries

in O(1) time. The document array E takes O(n lgD) bits and C requires O(n lg n)

bits. Using these ideas Muthukrishnan obtained the following result.

Lemma 5.2.1 ([18]). Given an array A[1..n] and a query [L,R], all of the k unique

integers in A[L..R] can be reported in O(k) time using an O(n)-word index.

It is straight forward to extend this result to work with two ranges over the

document array for the augmented GST.

Lemma 5.2.2. Given an array E[1..O(n lg n)] and a query ([s1, e1], [s2, e2]), all of

the k unique integers in E[s1..e2] ∩ E[s2..e2] can be reported in O(k) time using an

O(n lg n)-word index.

Proof. We have an array E[1..O(n lg n)] and two query ranges [s1, e1], [s2, e2]. We can

build the index of Lemma 5.2.1 over E. This takes O(n lg n) words because there are

O(n lg n) elements in E.

Suppose E[s1..e1] contains k1 unique integers and E[s2..e2] contains k2 unique

integers. Let k be the total number unique integers in both ranges combined (integers

that appear in the first range, the second range, or both).

Apply Lemma 5.2.1 report all of the k1 unique documents in E[s1..e1]. This takes

O(k1) time. Use the Lemma again to report the k2 unique documents in E[s2..e2].

This takes O(k2) time. In this second list, there may be some duplicates that were

already reported by the first query.
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We combine the two lists to get one list ofO(k1+k2) elements. Duplicate document

IDs can now be removed in O(k1 + k2) time using Lemma 4.3.1.

Clearly k1 + k2 ≤ 2k. In the worst case both ranges contain that same set of

unique integers, so every document ID is considered twice. Therefore, the overall

time required is O(k1 + k2) = O(2k) = O(k).

5.3 Answering Queries

Given a query pattern P [1..m] = P0φP1 we apply Cole’s index to find up to two locus

nodes in the augmented GST. This takes O(m) time by Lemma 4.1.1. We refer the

reader to Chapter 4 for discussion of how pattern matching is done with Cole’s index.

The suffix range of both locus nodes ([s1, e1] and [s2, e2] respectively) are next

found in O(1) time using the GST, as described in Lemma 3.2.1. Finally, the unique

document IDs in E[s1..e1]∩E[s2..e2] are reported in O(docc) time using Lemma 5.2.2.

docc denotes the number of documents that match the number of pattern. The same

approach can be used if there is just one locus node (there is just one suffix range in

E instead of two). This gives the following theorem.

Theorem 5.3.1. A collection of D documents over an alphabet of size σ can be

indexed in O(n lg n) words so that for all documents containing at least one occurrence

of a pattern P [1..m] = P0φP1 can be reported in O(m+docc) time. Here, docc denotes

the number of documents that contain at least one occurrence of P .



Chapter 6

Conclusion

In this thesis we presented two new indexes for document retrieval problems where the

query pattern contains one wildcard. Our solutions combine Cole’s classic wildcard

text indexing structures with traditional approaches for each of these problems.

For the top-k problem, we applied techniques from Hon et al. [8]. The general

idea is to find all of the locus nodes of the pattern using Cole’s index. Next, the top-k

documents can be found by generating a candidate set of documents. The candidate

set size is kept small by maintaining precomputed top-k answers for some nodes in

the tree. Next, the score of each candidate is computed. Finally, the top-k highest

scoring documents are returned.

For the document listing problem we combined Cole’s index with ideas from

Muthukrishnan [18] to obtain an index with optimal query time. As with the other so-

lution, the locus nodes for the query pattern are found using Cole’s index. A coloured

range reporting structure is built over the document array. This structure is used to

list all of the unique document IDs in the suffix range of each locus node. Finally,

duplicate document IDs are removed.

Document retrieval with wildcards has proven to be a challenging problem. There

are still many open problems, and many ways to extend this work. We discuss some

ideas in the following list.

• Our top-k index only supports one wildcard in the pattern. It would be natural

to attempt to extend them to work with multiple wildcards, especially since

the underlying wildcard text indexes support multiple wildcards. The challenge

is that the number of possible locus nodes is exponential in the number of

wildcards. The query time is related to how many precomputed sets of top-k

answers we can store. Many possible combinations of locus nodes could result

from matching a pattern with multiple wildcards. Storing precomputed answers

for all possible combinations of marked nodes is not feasible. Nevertheless, our

23
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index in Section 4.4 could be a good starting point for solving this problem.

• In our discussion of the top-k problem, we only considered using term frequency

as a score function. These ideas could be applied to support other score func-

tions.

• Coloured range listing structures support listing all of the distinct colours in a

single range. It would be interesting to see if these structures could be extended

to list all of the distinct colours in multiple ranges efficiently. This would allow

our document listing index to handle multiple wildcards in the pattern.

• Work continues to be done on indexing text to support wildcard matching. New

improvements and trade-offs for this problem could support better document

retrieval indexes. Text indexes with lower space requirements could also be

considered.

• Lower bounds on most wildcard document retrieval problems have not been

proven. It would be interesting to find lower bounds for these problems and

compare existing results.

• Wildcard matching is related to other approximate matching problems including

Hamming distance and edit distance. The techniques used in this thesis might

apply to these related problems.
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